Abbreviated Final Report: Virucidal Efficacy Suspension Test – Swine Influenza Virus (H1N1) Project No: 694-102

CONFIDENTIAL FINAL REPORT

SPONSOR: Global Future Solutions

SPONSOR'S REPRESENTIVE: Brian Rhoades

STUDY TITLE: Virucidal Efficacy Suspension Test – Swine Influenza Virus (H1N1)

STUDY IDENTIFICATION:

MICROBIOTEST Project No. 694-102 (refer to signed protocol)

TEST AGENT NAME	LOT NO.	DATE RECEIVED	DS NO.
GFS BioProtect [™] Surface	20-7-09	07/22/09	10227
Spray Disinfectant Hospital			
Grade			

ACTIVE INGREDIENT(S): 3-(trimethoxysilyl) propydimethyloctadecyl, ammonium chloride, polyhexamethylene bioguanide, benzalkonium chloride

- **NEUTRALIZER:** Fetal bovine serum + 0.5% Lecithin
- **CELL CULTURE MEDIUM:** MEM + 1.0 μg/mL Trypsin

CHALLENGE ORGANISM: Swine Influenza Virus (H1N1), A/Swine/1976/31, ATCC VR-99

HOST: MDCK cells, ATCC CCL-34

EXPOSURE TIME: 60 Minutes

VIRUS APPLICATION:

NUMBER OF REPLICATES: Four wells per dilution

CONTACT TEMPERATURE: Ambient Temperature (20C)

Direct mixing – 0.3 mL stock virus was spiked with 2.7 mL test agent and mixed by vortexing.

MICROBIOTEST

CALCULATION OF TITER AND 95% CONFIDENCE INTERVAL

The 50% tissue culture infectious dose per mL (TCID₅₀/mL) was determined using the Spearman-Karber method using the following formula:

$$m = x_k + \left(\frac{d}{2}\right) - d\sum p_i$$

where:

m = the logarithm of the titer relative to the test volume

xk = the logarithm of the smallest dosage which induces infection in all cultures

d = the logarithm of the dilution factor

pi = the proportion of positive results at dilution i

The values were converted to TCID₅₀/mL using a sample inoculum of 1.0 mL.

The viral titer of each sample is reported as \pm the 95% confidence intervals. The standard error, σ_m , was calculated using the following formula:

$$\sigma_m^2 = d_f^2 \sum \frac{p_i(1-p_i)}{(n_i-1)}$$

where:

df = the logarithm of the dilution factor

pi = the proportion of positive results at dilution i

σ_m = the standard error

ni = number of replicates at dilution i

and \sum denotes the summation over dilutions beginning at the kth dilution. The 95% confidence interval is m ± 1.96 σ_m .

When a sample contains a low concentration of virus there is a discrete probability that if only a fraction of the sample is tested for virus, that fraction will test negative due to random distribution of virus throughout the total sample. The probability, p, that the sample analyzed does not contain infectious virus is expressed by: $p = [(V-v)/V]^v$, where V is the total volume of the container, v is the volume of the fraction being tested, and y is the absolute number of infectious viruses randomly distributed in the sample. If V is sufficiently large relative to v, the Poisson distribution can approximate p:

MICROBIOTEST

Page 2 of 4

Abbreviated Final Report: Virucidal Efficacy Suspension Test – Swine Influenza Virus (H1N1) Project No: 694-102

CALCULATION OF TITER AND 95% CONFIDENCE INTERVAL (continued)

 $P = e^{-cv}$ or c = -[Ln(P)] / v

Where c is the concentration of infectious virus and v is the total sample volume.

The amount of virus which would have to be present in the total sample in order to achieve a positive result with 95% confidence (p = 0.05) is calculated as

c = -[Ln(0.05)] / v = 3 / v

If all n dishes are negative, the virus titer after the process is considered to be less than or equal to this value. The total volume of sample assayed is v = v'nd, where v' is the test volume in a dish, n is the number of dishes per sample, and d is the sample dilution.

RESULTS:

. 1

Results are presented in Tables 1-3. All controls met the criteria for a valid test.

The formula for determining the log reduction factor (LRF) for each step is:

LRF = Log₁₀ Output Titer x Output Volume

When a sample is diluted and/or neutralized prior to being assayed, a volume correction factor should be included in the calculation of the viral load.

Viral Load (log₁₀) = Virus Titer (log₁₀/mL) + log₁₀ [volume (mL) x volume correction (mL)]

The 95% Confidence Interval (CI) for the LRF are calculated as follows:

 $(CI_{LRF})^2 = (CI_{input})^2 + (CI_{output})^2$

In the case when all negatives are observed, simply replace the output load by c x Output Volume for calculating the log reduction, where c is taken from the Poisson 95% confidence interval discussed above, and substitute 0 for Cl_{output} in calculating the 95% confidence interval of the log reduction factor.

MICROBIOTEST

Page 3 of 4

RESULTS (continued):

Table 1 – Titer Results

Sample	Titer ± 95% CI (log₁₀TCID₅₀/mL)	Volume (mL)	Volume Correction ^a	Viral Load (log₁₀TCID₅₀)
Virus Stock Titer Control	≥ 7.50 ± 0.00	-	-	-
Cell Viability Control	No virus was detected, cell remained viable; media were sterile			
GFS BioProtect [™] Surface Spray Disinfectant Hospital Grade ^b	≤ 2.83 *	3	2	≤ 3.61
Virus Recovery Control	7.25 ± 0.25	3	2	8.03 ± 0.25
Column Titer Control	≤ 7.50 ± 0.00	3	2	±

^a volume correction accounts for the neutralization of the sample post contact time.

^b Cytotoxicity was observed at 10^{^-2}

* No Virus was detected. The theoretical titer was determined based on Poisson distribution

Table 2 – Neutralizer Effectiveness and Cytotoxicity Related Controls

Dilution of the Test Agent/Neutralizer Mixture	Neutralizer Effectiveness Control	Cytotoxicity Control	
10^-2	Cytotoxicity observed	Cytotoxicity observed	
10^-3	Virus detected in all inoculated wells	No cytotoxicity observed	
10^-4	Virus detected in all inoculated wells	No cytotoxicity observed	

Table 3 – Reduction Factor(s)

Test Agent	Initial Load (log ₁₀ TCID ₅₀)	Output Load (log ₁₀ TCID ₅₀)	log ₁₀ Reduction	Reduction (%)
GFS BioProtect [™] Surface Spray Disinfectant Hospital Grade	8.03 ± 0.25	≤ 3.61	≥ 4.42 ± 0.25	≥ 99.996

CONCLUSION

The viral reduction for the test agent is presented in Table 3. All of the controls met the criteria for a valid test. These conclusions are based on observed data.

Study director:

S. Steve Zhou, Ph.D.

08/20/2009 Date

MICROBIOTEST

Page 4 of 4